Mutational Analysis and Deep Learning Classification of Uterine and Cervical Cancers

Authors

  • Paul Gomez NanoBioTek, LLC, 9985 Lancashire Dr, FL 32219, USA

DOI:

https://doi.org/10.55578/joaims.221215.001

Keywords:

Uterine cancer, Artificial Intelligence (AI), Machine Learning (ML), Deep Learning (DL), TensorFlow

Abstract

We analyzed tumor mutations of 7 uterine and 2 cervical cancers with the goal of developing a Deep Learning (DL) software tool that can automatically classify tumors based on their somatic mutations. The data were obtained from the AACR Genie Project, that has a collection of more than 120,000 tumor samples for more than 750 cancer types. We performed a thorough analysis of the mutational data of tumors of the uterus and uterine cervix, selecting tumors with 3 or more mutations and cancer types with more than 15 cases. For each cancer type we then selected the top 12 most mutated genes among their neoplasms. In the introduction section we summarize our analysis of these nine diseases and in the methods section we present a convolutional neural network (CNN) that yields an overall classification accuracy of 94.3% and 89.2% on the train and test datasets, respectively. We hope this tool can be added to the existing arsenal of histological and immunohistochemical techniques in cases when a precise diagnosis cannot be clearly determined. Each cancer type has a unique somatic mutational profile that can be used to disambiguate two candidate malignancies with similar histologic features.

Author Biography

Paul Gomez, NanoBioTek, LLC, 9985 Lancashire Dr, FL 32219, USA

 

 

References

National Cancer Institute. https://seer.cancer.gov/statfacts/html/corp.html

J.V. Bokhman, Two pathogenetic types of endometrial carcinoma, Gynecol. Oncol. 15 (1983), 10–7. https://doi.org/10.1016/0090-8258(83)90111-7

V.W. Setiawan, H.P. Yang, M.C. Pike, S.E. McCann, H. Yu, Y.-B. Xiang, et al., Type I and II endometrial cancers: have they different risk factors?, J. Clin. Oncol. 31 (2013), 2607–2618. https://doi.org/10.1200/JCO.2012.48.2596

P.A. Sanderson, H.O.D. Critchley, A.R.W. Williams, M.J. Arends, P.T.K. Saunders, New concepts for an old problem: the diagnosis of endometrial hyperplasia. Hum. Reprod. Update. 23 (2017), 232–254. https://doi.org/10.1093/humupd/dmw042

A. Oaknin, T.J. Bosse, C.L. Creutzberg, G. Giornelli, P. Harter, F. Joly, et al., Endometrial cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up, Ann. Oncol. 33 (2022), 860–877. https://doi.org/10.1016/j.annonc.2022.05.009

L. Minig, D. Franchi, S. Boveri, C. Casadio, L. Bocciolone, M. Sideri, Progestin intrauterine device and GnRH analogue for uterus-sparing treatment of endometrial precancers and well differentiated early endometrial carcinoma in young women, Ann. Oncol. 22 (2011), 643–649. https://doi.org/10.1093/annonc/mdq463

K. Matsuo, R.S. Mandelbaum, M. Ciccone, M. Khoshchehreh, H. Purswani, E.B. Morocco, et al. Route-specific association of progestin therapy and concurrent metformin use in obese women with complex atypical hyperplasia, Int. J. Gynecol. Cancer. 30 (2020), 1–9. https://doi.org/10.1136/ijgc-2020-001362

E.A. Widra, C.J. Dunton, M. Mchugh, J.P. Palazzo, Endometrial hyperplasia and the risk of carcinoma, Int. J. Gynecol. Cancer. 5 (1995), 233–235. https://pubmed.ncbi.nlm.nih.gov/11578482/

I. Laskov, Y. Tzur, O. Zindel, N. Michaan, E. Tako, A. Aizic, et al., The incidence of endometrial carcinoma in patients with atypical endometrial hyperplasia versus atypical endome-trial polyp, Gynecologic Oncol. 166 (2022), S220. https://doi.org/10.1016/S0090-8258(22)01660-2

A. Katcher, K. Seay, H. Juhel, W. Shan, A. Nizam, A. Kredentser, et al., The accuracy of pre-operative and intra-operative pathologic diagnosis of complex atypical hyperplasia and endometrial cancer, Gynecologic Oncol. 166 (2022), S190. https://doi.org/10.1016/S0090-8258(22)01593-1

M.L. Iversen, M. Dueholm, Complex non atypical hyperplasia and the subsequent risk of carcinoma, atypia and hysterectomy during the following 9–14 years, Eur. J. Obstet. Gynecol. Reprod. Biol. 222 (2018), 171–175. https://doi.org/10.1016/j.ejogrb.2018.01.026

B.-L. Li, X.-P. Wan, Prognostic significance of immune landscape in tumour microenvironment of endometrial cancer, J. Cell. Mol. Med. 24 (2020), 7767–7777. https://doi.org/10.1111/jcmm.15408

C. Zhou, C. Li, F. Yan, Y. Zheng, Identification of an immune gene signature for predicting the prognosis of patients with uterine corpus endometrial carcinoma, Cancer Cell Int. 20 (2020), 541. https://doi.org/10.1186/s12935-020-01560-w

C. Nero, F. Ciccarone, A. Pietragalla, G. Scambia, PTEN and Gynecological cancers, Cancers (Basel). 11 (2019), 1458. https://doi.org/10.3390/cancers11101458

G.M. Blumenthal, P.A. Dennis, Germline PTEN mutations as a cause of early-onset endometrial cancer, J. Clin. Oncol. 26 (2008), 2234–2234. https://doi.org/10.1200/JCO.2007.15.8949

J.L. Hecht, G.L. Mutter, Molecular and pathologic aspects of endometrial carcinogenesis, J. Clin. Oncol. 24 (2006), 4783–4791. https://doi.org/10.1200/JCO.2006.06.7173

Y. Zhang, J. Zhang, Z. Shao, L. Zhao, Y. Zhang, S. Zhang, et al., Mutational landscapes and tumour mutational burden expression in endometrial cancer, Ann. Oncol. 30 (2019), v424–v425. https://doi.org/10.1093/annonc/mdz250.048

Y.-R. Lee, M. Chen, P.P. Pandolfi, The functions and regulation of the PTEN tumour suppressor: new modes and prospects, Nat. Rev. Mol. Cell Biol. 19 (2018), 547–562. https://pubmed.ncbi.nlm.nih.gov/29858604/

I. Sansal, W.R. Sellers, The biology and clinical relevance of the PTEN tumor suppressor pathway, J. Clin. Oncol. 22 (2004), 2954–2963. https://pubmed.ncbi.nlm.nih.gov/15254063/

S. Bose, G.K. Schwartz, M. Ingham, Novel therapeutics in the treatment of uterine sarcoma, Am. Soc. Clin. Oncol. Educ. Book. 42 (2022), 900–909. https://doi.org/10.1200/EDBK_350541

J.A. Rauh-Hain, T. Oduyebo, E.J. Diver, S.H. Guseh, S. George, M.G. Muto, et al., Uterine leiomyosarcoma: an updated series, Int. J. Gynecol. Cancer. 23 (2013), 1036–1043. https://doi.org/10.1097/IGC.0b013e31829590dc

A. Janiec-Jankowska, B. Konopka, C. Goluda, U. Najmoła, TP53 mutations in endometrial cancers: relation to PTEN gene defects, Int. J. Gynecol. Cancer. 20 (2010), 196–202. https://doi.org/10.1111/IGC.0b013e3181c83675

L. Vermij, A. Léon-Castillo, N. Singh, M.E. Powell, R.J. Edmondson, C. Genestie, et al., p53 immunohistochemistry in endometrial cancer: clinical and molecular correlates in the PORTEC-3 trial, Mod. Pathol. 35 (2022), 1475–1483. http://doi.org/10.1038/s41379-022-01102-x

A.M. Schultheis, L.G. Martelotto, M.R. De Filippo, S. Piscuglio, C.K.Y. Ng, Y.R. Hussein, et al., TP53 mutational spectrum in endometrioid and serous endometrial cancers, Int. J. Gynecol. Pathol. 35 (2016), 289–300. https://doi.org/10.1097/PGP.0000000000000243

S. Yadav, A. Agarwal, S. Mokal, S. Menon, B. Rekhi, K. Deodhar, Serous endometrial intraepithelial carcinoma: a clinico-pathological study of 48 cases and its association with endometrial polyps – a tertiary care oncology centre experience, Eur. J. Obstet. Gynecol. Reprod. Biol. 264 (2021), 168–172. https://doi.org/10.1016/j.ejogrb.2021.07.007

S. Wang, Z. Wang, K. Mittal, Concurrent endometrial intraepithelial carcinoma (EIC) and endometrial hyperplasia, Hum. Pathol.: Case Rep. 2 (2015), 1–4. http://doi.org/10.1016/j.ehpc.2014.07.003

J.S. Ferriss, B.K. Erickson, I.-M. Shih, A.N. Fader, Uterine serous carcinoma: key advances and novel treatment approaches, Int. J. Gynecol. Cancer. 31 (2021), 1165– 1174. https://pubmed.ncbi.nlm.nih.gov/34210768/

P.A. Gehrig, D.E. Morris, L. Van Le, Uterine serous carcinoma: a comparison of therapy for advanced-stage disease, Int. J. Gynecol. Cancer. 14 (2004), 515–520. https://pubmed.ncbi.nlm.nih.gov/15228426/

D. Faratian, A. Stillie, R.M.C. Busby-Earle, V.J. Cowie, H. Monaghan, A review of the pathology and management of uterine papillary serous carcinoma and correlation with outcome, Int. J. Gynecol. Cancer. 16 (2006), 972–978. https://pubmed.ncbi.nlm.nih.gov/16803471/

B.M. Slomovitz, R.R. Broaddus, T.W. Burke, N. Sneige, P.T. Soliman, W. Wu, et al., Her-2/neu overexpression and amplification in uterine papillary serous carcinoma, J. Clin. Oncol. 22 (2004), 3126–3132. https://doi.org/10.1200/JCO.2004.11.154

M. Olivier, M. Hollstein, P. Hainaut, TP53 mutations in human cancers: origins, consequences, and clinical use, Cold Spring Harb. Perspect. Biol. 2 (2010), a001008. http://doi.org/10.1101/cshperspect.a001008

F. Mantovani, L. Collavin, G. Del Sal, Mutant p53 as a guardian of the cancer cell, Cell Death Differ. 26 (2019), 199–212. https://doi.org/10.1038/s41418-018-0246-9

I. Espinosa, M.J. Carnicer, L. Catasus, B. Canet, E. D’angelo, G.F. Zannoni, et al., Myometrial invasion and lymph node metastasis in endometrioid carcinomas: tumor-associated macrophages, microvessel density, and HIF1A have a crucial role. Am. J. Surg. Pathol. 34 (2010), 1708–1714. http://doi.org/10.1097/PAS.0b013e3181f32168

K.B. Lee, K.D. Ki, J.M. Lee, J.-K. Lee, J.W. Kim, C.-H. Cho, et al., The risk of lymph node metastasis based on myometrial invasion and tumor grade in endometrioid uterine cancers: a multicenter, retrospective Korean study, Ann. Surg. Oncol. 16 (2009), 2882–2887. http://doi.org/10.1245/s10434-009-0535-0

A.B. Olawaiye, C.A. Leath, Contemporary management of uterine clear cell carcinoma: a Society of Gynecologic Oncology (SGO) review and recommendation, Gynecol. Oncol. 155 (2019), 365–373. https://doi.org/10.1016/j.ygyno.2019.08.031

I. Ben Safta, H. Mansouri, O. Jaidane, I. Zemni, N. Boujelbene, J. Ben Hassouna, et al., Clear cell carcinoma of the uterine corpus, Int. J. Gynecol. Cancer. 29 (2019), A167. https://doi.org/10.1136/ijgc-2019-igcs.402

C. Zhang, W. Hu, N. Jia, Q. Li, K. Hua, X. Tao, et al., Uterine carcinosarcoma and high-risk endometrial carcinomas: a clinicopathological comparison, Int. J. Gynecol. Cancer. 25 (2015), 629–636. https://doi.org/10.1097/igc.0000000000000350

G. Pezzicoli, F. Moscaritolo, E. Silvestris, F. Silvestris, G. Cormio, C. Porta, et al., Uterine carcinosarcoma: an overview, Crit. Rev. Oncol. Hematol. 163 (2021), 103369. https://doi.org/10.1016/j.critrevonc.2021.103369

J.F. Liu, N. Xiong, S.M. Campos, A.A. Wright, C. Krasner, S. Schumer, et al., Phase II study of the WEE1 inhibitor adavosertib in recurrent uterine serous carcinoma, J. Clin. Oncol. 39 (2021), 1531–1539. https://doi.org/10.1200/jco.20.03167

S. Sagae, N. Susumu, A.N. Viswanathan, D. Aoki, F.J. Backes, D.M. Provencher, et al., Gynecologic Cancer InterGroup (GCIG) consensus review for uterine serous carcinoma, Int. J. Gynecol. Cancer. 24 (2014), S83–S89. https://doi.org/10.1097/igc.0000000000000264

M.C. Saez Perrotta, C.B. Chacon, A. Wernicke, Mixed endometrial carcinomas: morphologic features, pathogenesis, and diagnostic challenges, Int. J. Gynecol. Cancer. 31 (2021), 304–305. https://doi.org/10.1136/ijgc-2020-002069

I. Espinosa, E. D’Angelo, M. Corominas, A. Gonzalez, J. Prat, Mixed endometrial carcinomas with a “low-grade serous”– like component: a clinicopathologic, immunohistochemical, and molecular genetic study, Hum. Pathol. 71 (2018), 65–73. https://doi.org/10.1016/j.humpath.2017.10.016

X. Wang, A. Cao, Z. Hou, X. Li, B. Gao, Identification of key classification features of early cervical squamous cell carcinoma, Comput. Biol. Chem. 93 (2021), 107531. https://doi.org/10.1016/j.compbiolchem.2021.107531

M.E. Robert, Y.S. Fu, Squamous cell carcinoma of the uterine cervix—a review with emphasis on prognostic factors and unusual variants, Semin. Diagn. Pathol. 7 (1990), 173–189. https://pubmed.ncbi.nlm.nih.gov/2218146/

S. Stolnicu, K.J. Park, T. Kiyokawa, E. Oliva, W.G. McCluggage, R.A. Soslow, Tumor typing of endocervical adenocarcinoma: contemporary review and recommendations from the International Society of Gynecological Pathologists, Int. J. Gynecol. Pathol. 40 (2021), S75–S91. https://doi.org/10.1097/pgp.0000000000000751

K.L. Talia, E. Oliva, J.T. Rabban, N. Singh, S. Stolnicu, W.G. McCluggage, Grading of endocervical adenocarcinomas: review of the literature and recommendations from the International Society of Gynecological Pathologists, Int. J. Gynecol. Pathol. 40 (2021), S66–S74. https://doi.org/10.1097/pgp.0000000000000741

S. Zhang, H. Xu, L. Zhang, Y. Qiao, Cervical cancer: epidemiology, risk factors and screening, Chin. J. Cancer Res. 32 (2020), 720–728. https://pubmed.ncbi.nlm.nih.gov/33446995/

J. Lei, L.S. Arroyo-Mühr, C. Lagheden, C. Eklund, S. Nordqvist Kleppe, M. Elfström, et al., Human papillomavirus infection determines prognosis in cervical cancer, J. Clin. Oncol. 40 (2022), 1522–1528. https://doi.org/10.1200/jco.21.01930

E.M. Burd, Human papillomavirus and cervical cancer, Clin. Microbiol. Rev. 16 (2003), 1–17. https://pubmed.ncbi.nlm.nih.gov/12525422/

H. zur Hausen, Papillomaviruses and cancer: from basic studies to clinical application, Nat. Rev. Cancer. 2 (2002), 342–350. https://doi.org/10.1038/nrc798

D.A. Elson, R.R. Riley, A. Lacey, G. Thordarson, F.J. Talamantes, J.M. Arbeit, Sensitivity of the cervical transformation zone to estrogen-induced squamous carcinogenesis, Cancer Res. 60 (2000), 1267–1275. https://pubmed.ncbi.nlm.nih.gov/10728686/

H. Deng, E. Hillpot, S. Mondal, K.K. Khurana, C.D. Woodworth, HPV16-immortalized cells from human transformation zone and endocervix are more dysplastic than ectocervical cells in organotypic culture, Sci. Rep. 8 (2018), 15402. https://doi.org/10.1038/s41598-018-33865-2

I.A. Voutsadakis, PI3KCA mutations in uterine cervix carcinoma, J. Clin. Med. 10 (2021), 220. https://doi.org/10.3390/jcm10020220

S. Razia, K. Nakayama, K. Nakamura, T. Ishibashi, M. Ishikawa, T. Minamoto, et al., Clinicopathological and biological analysis of PIK3CA mutation and amplification in cervical carcinomas, Exp. Ther. Med. 18 (2019), 2278–2284. https://doi.org/10.3892/etm.2019.7771

J. Doorbar, H. Griffin, Refining our understanding of cervical neoplasia and its cellular origins, Papillomavirus Res. 7 (2019), 176–179. https://doi.org/10.1016/j.pvr.2019.04.005

C.M. Park, H.M. Koh, S. Park, H.S. Kang, S.S. Shim, S.Y. Kim, Gastric type mucinous endocervical adenocarcinoma of the uterine cervix: very rare and interesting case, Obstet. Gynecol. Sci. 61 (2018), 165–169. https://doi.org/10.5468/ogs.2018.61.1.165

Z. Liu, J. Li, H. Gu, H. Tu, G. Liu, J. Liu, Clear cell adenocarcinoma of uterine cervix: a single institution retrospective experience, Front. Oncol. 10 (2020), 532748. https://doi.org/10.3389/fonc.2020.532748

S. Stolnicu, L. Hoang, O. Hanko-Bauer, I. Barsan, C. Terinte, A. Pesci, et al., Cervical adenosquamous carcinoma: detailed analysis of morphology, immunohistochemical profile, and clinical outcomes in 59 cases, Mod. Pathol. 32 (2019), 269–279. https://doi.org/10.1038/s41379-018-0123-6

M.L. Tornesello, C. Annunziata, L. Buonaguro, S. Losito, S. Greggi, F.M. Buonaguro, TP53 and PIK3CA gene mutations in adenocarcinoma, squamous cell carcinoma and high-grade intraepithelial neoplasia of the cervix, J. Transl. Med. 12 (2014), 255. https://doi.org/10.1186/s12967-014-0255-5

A. Hodgson, Y. Amemiya, A. Seth, M. Cesari, B. Djordjevic, C. Parra-Herran, Genomic abnormalities in invasive endocervical adenocarcinoma correlate with pattern of invasion: biologic and clinical implications, Mod. Pathol. 30 (2017), 1633–1641. https://doi.org/10.1038/modpathol.2017.80

AACR Project GENIE Consortium, AACR Project GENIE: Powering Precision Medicine through an International Consortium, Cancer Discov. 7 (2017), 818–831. https://pubmed.ncbi.nlm.nih.gov/28572459/

R. Kundra, H. Zhang, R. Sheridan, S.J. Sirintrapun, A. Wang, A. Ochoa, et al., OncoTree: a cancer classification system for precision oncology, JCO Clin. Cancer Inform. 5 (2021), 221–230. https://pubmed.ncbi.nlm.nih.gov/33625877/

National Cancer Institute, GDC Documentation, https://docs.gdc.cancer.gov/Encyclopedia/pages/Variant_Type/

E. Ladhuis, Deep learning takes on tumours, Artificial-intelligence methods are moving into cancer research, Nature. 580 (2020), 551–553. https://pubmed.ncbi.nlm.nih.gov/32317799/

W. Jiao, G. Atwal, P. Polak, R. Karlic, E. Cuppen, PCAWG Tumor Subtypes and Clinical Translation Working Group; et al., A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns, Nat. Commun. 11 (2020), 728. https://pubmed.ncbi.nlm.nih.gov/32024849/

A. Kleppe, O.J. Skrede, S. De Raedt, K. Liestøl, D.J. Kerr, H.E. Danielsen, Designing deep learning studies in cancer diagnostics, Nat. Rev. Cancer. 21 (2021), 199–211. https://doi.org/10.1038/s41568-020-00327-9

W. Zhu, L. Xie, J. Han, X. Guo, The application of deep learning in cancer prognosis prediction, Cancers. 12 (2020), 603. https://doi.org/10.3390/cancers12030603

S. Albawi, T.A. Mohammed, S. Al-Zawi, Understanding of a convolutional neural network, 2017 International Conference on Engineering and Technology (ICET), IEEE, Antalya, Turkey, 2017, pp. 1–6. https://doi.org/10.1109/icengtechnol.2017.8308186

Published

2022-12-23

How to Cite

1.
Gomez P. Mutational Analysis and Deep Learning Classification of Uterine and Cervical Cancers. JAIMS [Internet]. 2022 Dec. 23 [cited 2024 Mar. 5];3(1-2):16-22. Available from: http://ojs.ais.cn/jaims/article/view/83